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ABSTRACT
A major challenge for traditional approaches to multiagent
learning is to train teams that easily scale to include addi-
tional agents. The problem is that such approaches typi-
cally encode each agent’s policy separately. Such separation
means that computational complexity explodes as the num-
ber of agents in the team increases, and also leads to the
problem of reinvention: Skills that should be shared among
agents must be rediscovered separately for each agent. To
address this problem, this paper presents an alternative evo-
lutionary approach to multiagent learning called multiagent
HyperNEAT that encodes the team as a pattern of related
policies rather than as a set of individual agents. To capture
this pattern, a policy geometry is introduced to describe the
relationship between each agent’s policy and its canonical
geometric position within the team. Because policy geome-
try can encode variations of a shared skill across all of the
policies it represents, the problem of reinvention is avoided.
Furthermore, because the policy geometry of a particular
team can be sampled at any resolution, it acts as a heuristic
for generating policies for teams of any size, producing a
powerful new capability for multiagent learning. In this pa-
per, multiagent HyperNEAT is tested in predator-prey and
room-clearing domains. In both domains the results are ef-
fective teams that can be successfully scaled to larger team
sizes without any further training.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning—connectionism and neural nets,
concept learning ; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Multiagent Systems

General Terms: Algorithms

Keywords: CPPNs, HyperNEAT, Multiagent learning,
NEAT, Neural Networks, Evolutionary Computation

1. INTRODUCTION
Two significant challenges in multiagent learning are train-

ing large teams and scaling the size of trained teams to
productively employ an arbitrary number of agents. Cur-
rent approaches to multiagent learning, such as coopera-
tive coevolutionary algorithms (CCEAs [13, 21, 23, 24]) and
multiagent reinforcement learning (MARL [4, 8, 20]), incur
exponential computational cost as teams grow larger and
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also do not provide a principle for integrating new agents
into an existing heterogeneous team. In contrast, this pa-
per presents a novel heuristic for representing and training
a team of agents based on discovering how agents’ roles in-
terrelate, which also allows teams to be scaled to arbitrary
sizes without additional learning.

An important observation of human teams is that the be-
haviors of human agents tend to be related to their canonical
position within a team (e.g. at the start of a match). Such
teams effectively have a policy geometry, i.e. a functional re-
lationship between an agent’s location within the team and
that agent’s behavioral policy. Thus, rather than individu-
ally learning each agent’s policy, an intriguing possibility for
such teams is to instead learn a general relationship between
team geometry and policies that can be sampled to derive
the policies of individual agents.

While in traditional approaches the complexity of a multi-
agent learning problem increases exponentially with the size
of the team [6, 21], by representing a multiagent team as
a pattern of policies rather than as individual agents, this
problem is avoided: Only a single unifying pattern must be
learned regardless of the number of agents in the team. Fur-
thermore, while most real-life teams’ policies lie between ex-
treme homogeneity or heterogeneity, many traditional mul-
tiagent learning methods do not exploit such partial homo-
geneity and thus face the problem of reinvention: Skills that
should be shared across the team must be reinvented sepa-
rately for each agent. In contrast, the policy geometry can
represent such commonalities (at the same time as differ-
ences) without reinvention.

To implement this idea of exploiting policy geometry to
create scalable teams, hypercube-based neuroevolution of aug-
menting topologies (HyperNEAT), an approach to evolving
artificial neural networks (ANNs), is extended to encode pat-
terns of ANNs distributed across space. The spatial distri-
bution of ANNs matches with the initial locations of agents
on a team, thereby allowing HyperNEAT to learn the pol-
icy geometry of a given task. In this way, HyperNEAT can
reuse critical information to overcome both the problem of
reinvention and the difficulty of scaling a team’s size to an
arbitrary number of agents. The approach to multiagent
HyperNEAT in this paper substantially revises a prior such
approach [11] to make it more amenable to scaling.

This idea is tested in both predator-prey and room-clearing
tasks. In both tasks it evolves effective multiagent teams
that scale to larger team sizes, in some cases up to 1,000
agents, that nonetheless coordinate seamlessly without any
additional training.
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2. BACKGROUND
This section reviews popular approaches to multiagent

learning and the NEAT and HyperNEAT methods that form
the backbone of multiagent HyperNEAT.

2.1 Cooperative Multiagent Learning
Multiagent reinforcement learning (MARL) encompasses

several specific techniques based on off-policy and on-policy
temporal difference learning [4, 8, 20]. The basic principle
that unifies MARL techniques is to identify and reward
promising cooperative states and actions among a team of
agents [7,21]. The other major approach, cooperative coevo-
lutionary algorithms (CCEAs), is an established evolution-
ary method for training teams of agents that must work to-
gether [13,21,23]. The main idea is to maintain one or more
populations of candidate agents, evaluate them in groups,
and guide the creation of new candidate solutions based on
their joint performance.

While reinforcement learning and evolution are mainly
the focus of separate communities, Panait, Tuyls, and Luke
[22] showed recently that they share a significant common
theoretical foundation. One key commonality is that they
break the learning problem into separate roles that are semi-
independent and thereby learned separately through inter-
action with each other. Although this idea of separating
multiagent problems into parts is appealing, it does create
challenges for achieving certain desirable capabilities such as
scaling to larger team sizes, which is a focus in this paper.
The problem is that when individual roles are learned sep-
arately, there is no representation of how roles relate to the
team structure and therefore no principle for assigning new
roles automatically to new individuals.

Both CCEAs and MARL face the problem of reinvention.
That is, because agents are treated as separate subproblems
they must usually separately discover and represent all as-
pects of the solution, even though optimally there may be a
high degree of overlapping information among the policies of
each agent. CCEAs commonly separate agents into different
populations, creating strict divisions among agents, and in
MARL methods, each agent learns a separate reward func-
tion based upon individual or joint experiences. There have
been attempts to address the problem of reinvention such as
introducing existing agents that “train” new agents [25, 32]
or implementing specially-designed genetic operators [18].
However, an intriguing alternative is to exploit the contin-
uum of heterogeneity, which means distributing shared skills
optimally among the agents and only representing such skills
once. At the same time, unique abilities could be isolated
and assigned appropriately. The method in this paper ad-
dresses the problem of reinvention by finding the right point
on the continuum of heterogeneity for a given team.

The next section reviews the Neuroevolution of Augment-
ing Topologies (NEAT) method, the foundation for the mul-
tiagent learning approach introduced in this paper.

2.2 Neuroevolution of Augmenting Topologies
The HyperNEAT method that enables learning from ge-

ometry in this paper is an extension of the NEAT algorithm
for evolving ANNs. NEAT performs well in a variety of
control and decision-making problems [1, 29, 31]. It starts
with a population of small, simple neural networks and then
complexifies them over generations by adding new nodes and
connections through mutation. By evolving networks in this

way, the topology of the network does not need to be known
a priori; NEAT searches through increasingly complex net-
works to find a suitable level of complexity. Furthermore, it
allows NEAT to establish high-level features early in evolu-
tion and then later elaborate on them.

The important property of NEAT for this paper is that
it evolves both the topology and weights of a neural net-
work. Because it starts simply and gradually adds com-
plexity, NEAT tends to find a solution network close to the
minimal necessary size. In principle, another method for
learning the topology and weights of networks could also
fill the role of NEAT in this paper. Nevertheless, what is
important is to begin with a principled approach to learn-
ing both such features, which NEAT provides. Stanley and
Miikkulainen [29,31] provide a complete overview of NEAT.

The next section reviews the HyperNEAT extension to
NEAT that is itself extended in this paper to generate mul-
tiagent teams.

2.3 HyperNEAT
A key similarity among many neuroevolution methods, in-

cluding NEAT, is that they employ a direct encoding, that
is, each part of the solution’s representation maps to a single
piece of structure in the final solution. Yet direct encodings
impose the significant disadvantage that even when differ-
ent parts of the solution are similar, they must be encoded
and therefore discovered separately. This challenge is re-
lated to the problem of reinvention in multiagent systems:
After all, if individual team members are encoded by sepa-
rate genetic code, even if a component of their capabilities is
shared, the learner has no way to exploit such a regularity.
Thus this paper employs an indirect encoding instead, which
means that the description of the solution is compressed such
that information can be reused, allowing the final solution
to contain more components than the description itself. In-
direct encodings are powerful because they allow solutions
to be represented as a pattern of policy parameters, rather
than requiring each parameter to be represented individu-
ally [2, 3, 19, 27, 30]. HyperNEAT, reviewed in this section,
is an indirect encoding extension of NEAT that is proven
in a number of challenging domains that require discovering
regularities [9,10,14,15,28]. For a full description of Hyper-
NEAT see Stanley et al. [28] and Gauci and Stanley [15].

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs [27]) instead of ANNs. CPPNs, which are also
networks, are designed to encode compositions of functions,
wherein each function in the composition (which exists in
the network as an activation function for a node) loosely
corresponds to a useful regularity. For example, a Gaussian
function induces symmetry. Each such component function
also creates a novel geometric coordinate frame within which
other functions can reside. For example, any function of the
output of a Gaussian will output a symmetric pattern be-
cause the Gaussian is symmetric.

The appeal of this encoding is that it allows spatial pat-
terns to be represented as networks of simple functions (i.e.
CPPNs). Therefore NEAT can evolve CPPNs just like ANNs;
CPPNs are similar to ANNs, but they rely on more than one
activation function (each representing a common regularity)
and act as an encoding rather than a network.

The indirect CPPN encoding can compactly encode pat-
terns with regularities such as symmetry, repetition, and
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repetition with variation [26, 27]. For example, while in-
cluding a Gaussian function, which is symmetric, causes the
output to be symmetric, a periodic function such as sine
creates segmentation through repetition. Most importantly,
repetition with variation (e.g. such as the fingers of the
human hand) is easily discovered by combining regular co-
ordinate frames (e.g. sine and Gaussian) with irregular ones
(e.g. the asymmetric x-axis). For example, a function that
takes as input the sum of a symmetric function and an asym-
metric function outputs a pattern with imperfect symmetry.
In this way, CPPNs produce regular patterns with subtle
variations. The potential for CPPNs to represent patterns
with motifs reminiscent of patterns in natural organisms has
been demonstrated in several studies [27] including an on-
line service on which users collaboratively breed patterns
represented by CPPNs [26].

The main idea in HyperNEAT is that CPPNs can nat-
urally encode connectivity patterns [14, 15, 28]. That way,
NEAT can evolve CPPNs that represent large-scale ANNs
with their own symmetries and regularities. This capability
will prove essential to encoding multiagent policy geometries
in this paper because it will ultimately allow connectivity
patterns to be expressed as a function of team geometry,
which means that a smooth gradient of policies can be pro-
duced across possible agent locations.

Formally, CPPNs are functions of geometry (i.e. locations
in space) that output connectivity patterns whose nodes are
situated in n dimensions, where n is the number of dimen-
sions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space also denotes the connection between the
two-dimensional points (x1, y1) and (x2, y2), and the output
of the CPPN for that input thereby represents the weight
of that connection (Figure 1). By querying every possible
connection among a set of points in this manner, a CPPN
can produce an ANN, wherein each point is a neuron po-
sition. Because the connection weights are produced by a
function of their endpoints, the final structure is produced
with knowledge of its geometry. In effect, the CPPN is paint-
ing a pattern on the inside of a four-dimensional hypercube
that is interpreted as the isomorphic connectivity pattern,
which explains the origin of the name hypercube-based NEAT
(HyperNEAT). Connectivity patterns produced by a CPPN
are called substrates in order to verbally distinguish them
from the CPPN itself, which has its own internal topology.

Each queried point in the substrate is a node in a neural
network. The experimenter defines both the location and
role (i.e. hidden, input, or output) of each such node. Nodes
should be placed on the substrate to reflect the geometry of
the task [9, 10, 14, 15, 28]. That way, the connectivity of the
substrate is a function of the the task structure.

For example, the sensors of an autonomous robot can be
placed from left to right on the substrate in the same order
that they exist on the robot. Outputs for moving left or right
can also be placed in the same order, allowing HyperNEAT
to understand from the outset the correlation of sensors to
effectors. In this way, knowledge about the problem geom-
etry can be injected into the search and HyperNEAT can
exploit the regularities (e.g. adjacency, or symmetry) of a
problem that are invisible to traditional encodings.

In summary, the capabilities of HyperNEAT are impor-
tant for multiagent learning because they provide a formal-
ism for producing policies (i.e. the output of the CPPN) as
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Figure 1: CPPN-based Geometric Connectivity
Pattern Encoding. A collection nodes, called the sub-
strate, is assigned coordinates that range from −1 to 1 in all
dimensions. (1) Every potential connection in the substrate
is queried to determine its presence and weight; the dark di-
rected lines in the substrate depicted in the figure represent
a sample of connections that are queried. (2) Internally, the
CPPN (which is evolved by NEAT) is a graph that deter-
mines which activation functions are connected. As in an
ANN, the connections are weighted such that the output of
a function is multiplied by the weight of its outgoing connec-
tion. For each query, the CPPN takes as input the positions
of the two endpoints and (3) outputs the weight of the con-
nection between them. Thus, CPPNs can produce regular
patterns of connection weights in space.

a function of geometry (i.e. the inputs to the CPPN). As ex-
plained next, not only can such an approach produce a single
network but it can also produce a set of networks that are
each generated as a function of their location in space.

3. APPROACH: Multiagent HyperNEAT
Recall that the policy geometry of a team is the relation-

ship between the canonical starting positions of agents on
the field and their behavioral policies. Multiagent Hyper-
NEAT exploits the fact that policy geometry can be encoded
naturally as a pattern. To understand how the policy geome-
try of a team can be encoded, it helps to begin by considering
homogeneous teams, which in effect express a trivial policy
geometry in which the same policy is uniformly distributed
throughout the team at all positions. Thus this section be-
gins by exploring how teams of purely homogeneous agents
can be evolved with an indirect encoding, and then transi-
tions to a method for evolving heterogeneous teams that are
represented by a single genome in HyperNEAT.

3.1 Pure Homogeneous Teams
A homogeneous team is composed of a single controller

that is copied for each agent on the team. To generate such
a controller, a CPPN with inputs x1, y1, x2, and y2 (Figure
2a) queries the substrate shown in Figure 2c, which has five
inputs, five hidden nodes, and three output nodes, to de-
termine its connection weights. This substrate is designed
to geometrically correlate sensors to corresponding outputs
(e.g. seeing something on the left and turning left). Thus the
CPPN can exploit the geometry of the agent [28]. However,
the agents themselves have exactly the same policy no mat-
ter where they are positioned; while each agent is informed
by geometry, their policies cannot differentiate genetically.

3.2 The Continuum of Heterogeneity
Heterogeneous teams are a greater challenge; how can a

single CPPN encode a set of networks in a pattern, all with
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(c) Homog. Substrate (d) Het. Substrate
Figure 2: Multiagent HyperNEAT. This figure depicts
the CPPNs and substrates for homogeneous and heteroge-
neous learning in HyperNEAT. The CPPN in (a) generates
a single controller for a single agent or a homogeneous team
of agents. The single controller substrate that is queried by
this CPPN is shown in (c). In contrast, the CPPN in (b) en-
codes heterogeneous teams by sampling the substrate in (d),
which is made up of the single substrate (c) repeated across
the substrate five times. This repetition of coordinate frames
is accomplished through the z-axis, because each value of z
corresponds to a new set of x and y coordinates. Note that
CPPNs depicted in (a) and (b) increase in complexity over
evolution through the NEAT algorithm and the CPPN in
(b) begins with additional structure that provides knowl-
edge of mirrored symmetry along z through special nodes
that multiply the sum of one set of their inputs by the sum
of a second set of inputs.

related yet varying roles? Indirect encodings such as Hy-
perNEAT are naturally suited to capturing such patterns
by encoding the policy geometry of the team as a pattern.
The remainder of this section discusses the method by which
HyperNEAT can encode such teams.

The main idea is that the CPPN is able to create a pat-
tern based on both the agent’s internal geometry (x and y)
and its position on the team (z) (Figure 2b,d). The CPPN
can thus emphasize connections from z for increasing hetero-
geneity or minimize them to produce greater homogeneity.
Furthermore, because z is a spatial dimension, the CPPN
can literally generate policies based on their positions on
the team. Note that because z is a single dimension, the
policy geometry of this team (and those in this paper) is on
a one-dimensional line. However, in principle, more inputs
could be added, allowing two- or more dimensional policy
geometry to be learned as well. The starting structure of
the initial heterogeneous CPPN (Figure 2b) includes some
additional structure to start evolution with knowledge of
mirrored team symmetry; in particular, the sign function of
z connected to multiplication operators on the x-axis means
that the CPPN knows which side of the team is which and
can opt to reflect one side across the midline.
The heterogeneous substrate (Figure 2d) formalizes the

idea of encoding a team as a pattern of policies. This ca-
pability is powerful because generating each agent with the
same CPPN means they can share tactics and policies while
still exhibiting variation across the policy geometry. In other

1. Set the substrate to contain the necessary number of
agents (Figure 2d).

2. Initialize a population of CPPNs with random weights.

3. Repeat until a solution is found or the maximum num-
ber of generations are reached:

(a) For each CPPN in the population:

i. Query the CPPN for the weight of each con-
nection in the substrate within each agent’s
ANN. If the absolute value of the output ex-
ceeds a threshold magnitude, create the con-
nection with a weight scaled proportionally
to the output value (Figure 1).

ii. Assign the generated ANNs to the appropri-
ate agents and run the team in the task do-
main to ascertain fitness.

(b) Reproduce the CPPNs according to the NEAT
method to create the next generation.

Algorithm 1: Multiagent HyperNEAT

words, policies are spread across the substrate in a pattern
just as role assignment in a human team forms a pattern
across a field. However, even as roles vary, many skills are
shared, an idea elegantly captured by indirect encoding. The
complete multiagent HyperNEAT algorithm is enumerated
in Algorithm 1.

A key property of the heterogeneous substrate is that if
a new network is added to the substrate at an intermediate
location, its policy can theoretically be interpolated from
the policy geometry embodied in the CPPN. Thus, as the
next section describes, it becomes possible to scale teams
without further training by interpolating new roles.

3.3 Scaling
As discussed in Section 2.1, traditional multiagent learn-

ing techniques struggle to represent cooperative teams of
more than a few heterogeneous agents and there are typi-
cally few rules or principles from which to determine how
additional agents could be added after learning has taken
place. However, in real world tasks, it would be most con-
venient if the number of possible agents is unbounded and
independent of the number initially trained. Furthermore,
because agents may break down or additional ones may be-
come available, ideally the size of a learned team should be
dynamically adjustable after deployment.
Consider a soccer team, which includes eleven agents with

assigned roles. How might additional agents be added to
such a team, e.g. between the midfielders and the forwards?
Intuitively, the implicit policy geometry suggests that these
new agents should interpolate between the policies of the
surrounding agents. That is, they should be relatively of-
fensive, but not as offensive as the players in front of them.
Traditional techniques have no way to exploit this policy
geometry because they treat each agent independently and
would thus require retraining to assign roles to the new
agents. However, because teams in multiagent HyperNEAT
are represented by the CPPN as a pattern of policies rather
than as individual agents, the CPPN effectively encodes an
infinite number of heterogeneous agents that can be sampled
as needed without the need for additional learning. Thus if
more agents are required, the substrate can be updated to
encompass the new agents and resampled by the CPPN to
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(a) 5 Agent Team
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(b) 7 Agent Team
Figure 3: Heterogeneous Scaling. Because multiagent
HyperNEAT represents teams as a pattern of policies, it is
possible to interpolate new polices in the policy geometry for
additional agents by sampling new points on the substrate.
The original substrate (a) is scaled by inserting new two-
dimensional substrate slices along the z-axis (b).

assign policies to them without further evolving the CPPN.
In fact, the heterogeneous substrate accommodates addi-

tional agents by simply redistributing their controllers on
the z-axis so that they are uniformly spaced in accordance
with their new number (Figure 3).

Note that these steps can be taken after learning is com-
pleted and the new agent policies will be automatically inter-
polated based on the policy geometry by simply requerying
the CPPN. There is no limit to the size to which such a
substrate can be scaled in this way. Thus, through this ap-
proach, a new form of post-deployment scaling is introduced.

4. EXPERIMENTS
This section discusses the two experiments in this paper,

a predator-prey task and a room-clearing task, which are
designed to demonstrate multiagent HyperNEAT’s novel ca-
pability to flexibly scale heterogeneous teams.

4.1 Predator-Prey
In the cooperative multiagent predator-prey domain, a

group of five predators cooperate to capture a group of prey.
Because a predator may easily undermine a teammate’s pur-
suit of a prey, predators must learn consistent, complemen-
tary roles. All of the predators also need basic skills to
interpret and react to their sensors. Because multiagent Hy-
perNEAT creates all the agent ANNs from the same CPPN,
it has the potential to balance these contrasting ingredients
over teams with any number of agents.

Each predator agent is controlled by the ANN in Figure 2c
(which is a single slice of the heterogeneous substrate in Fig-
ure 2d). Predators are equipped with five rangefinder sen-
sors that detect nearby prey, but cannot sense other preda-
tors, making the task highly challenging by requiring careful
coordination. At each discrete moment, a predator can turn
and/or move in small increments. The predators’ goal is to
capture the prey agents by running into them.

Prey agents have a fixed policy; they maintain their cur-
rent location until threatened by nearby predators, and then
move in the opposite direction of the nearest predator until
they are once again at a safe distance. Because prey move
at the maximum speed of predator agents, it is impossible
for a solitary predator to catch a prey, so they must coordi-
nate. Each team of predators is trained on two variations of
one of three prey formations (triangle, diamond, and square;
Figure 4a) to balance generalization and specialization.

The predator team starts each trial in an evenly-spaced
line, facing the prey (Figure 4a). The environment is phys-
ically unbounded, but each trial has finite length (at most

(a) Formations (b) Room
Figure 4: Domains. In predator-prey (a), the prey (up-
per, shaded agents) are arranged in one of three formations.
The predators (lower, hollow agents) are always placed in
an evenly-spaced line (which mirrors their policy geometry)
below the prey. In room clearing (b), agents lined up in
front of the entrance to a room must cooperate to enter and
observe as much of the room as possible at once.

1,000 time steps). During a trial the predators attempt to
capture the prey, and at the end of each trial the team re-
ceives a score of 10,000p+(1,000− t), where p is the number
of prey captured and t is the time it takes to catch all the
prey. If all prey are not captured, t is set to 1,000. Team
fitness is the sum of the scores from the two trials on which
the team is evaluated, which encourages the predators to
capture all the prey as quickly as possible.

The challenge for the predators is to coordinate despite
their inability to see one another. This restriction encour-
ages establishing a priori policies for cooperation because
agents thus have little information to infer each others’ cur-
rent states. Such scenarios are not uncommon; military
units often form plans, split up, and execute complicated
maneuvers with little to no contact with each other [12].

4.2 Room Clearing
Room clearing is a good domain to further demonstrate

the abilities of multiagent HyperNEAT because in this do-
main, sensory information alone is inadequate to robustly
solve the task and physical collisions between agents are en-
forced even though they cannot see each other. It is also an
important military task that may one day be performed by
unmanned ground vehicles. In the room-clearing domain,
a group of agents enter a room and position themselves to
visually cover as much of the room as possible (assuming
360 degree rotating cameras). The optimal solution is for
each agent to be as far as possible from other agents. How-
ever, the agents’ rangefinder sensors do not directly spec-
ify whether a particular area is already covered by another
agent; thus, a priori role assignment is critical to obtain-
ing good performance. Coordination among varied policies
is also necessary because colliding with other unseen agents
may prevent an agent from reaching its desired destination.
The ability to avoid walls and navigate the room are also im-
portant for all the agents. As in the predator-prey domain,
multiagent HyperNEAT has the ability to balance the need
for these heterogeneous and homogeneous elements of policy
across teams with any number of agents.

Agents are controlled by ANNs similar in architecture to
those in the predator-prey domain, but augmented with re-
current connections so that agents can potentially retain a
basic memory of past states. Each agent has 11 rangefinder
sensors that indicate the distance to nearby walls but not
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nearby agents, which reflects a possible configuration of sen-
sors on real robots and also makes the task more difficult.
On each discrete time step, an agent’s ANN outputs dictate
whether it turns and/or moves in small increments. If an
agent requests to move at a velocity that is below a certain
threshold, it will be interpreted as a request to stop, and
the agent’s motor will be disabled for the remainder of the
evaluation. The room-clearing teams are trained at a size of
seven agents because preliminary experiments showed that
seven is the smallest team size for which avoiding overlap is
non-trivial. Thus, because the principle of spreading is the
key to scaling effectively, seven is a good size on which to
start to produce a team optimized to spread.

Agents are evaluated in a single rectangular room for
35 simulated seconds comprised of 0.2 second discrete time
steps. Agents begin outside the room in an evenly spaced
vertical line; a fixed policy of moving directly forward is
maintained for each agent until they are inside the room, at
which point each agent is under control of its evolved ANN
for the remainder of the evaluation. To measure how much
of the room is covered by the team of agents, a grid is super-
imposed upon the room. A grid square is deemed covered
if an agent is in close proximity to it. For each of the last
15 seconds of the evaluation, the number of grid squares in-
side the room covered by the agents is counted to determine
the team’s fitness score. This measure of fitness encourages
agents to spread quickly throughout a room just as a real
team of humans would, to rapidly assess risk.

4.3 Homogeneous vs. Heterogeneous Policies
To demonstrate that HyperNEAT gains from heteroge-

neous role-differentiation, both purely homogeneous and het-
erogeneous teams are trained and tested. Homogeneous
teams must rely on their current perceived state to differ-
entiate themselves, which is effective in some tasks [5]. In
contrast, heterogeneous teams have more tactical options
available because the search does not need to find one global
policy that works for all agents in all cases, that is, it can
separate the problem among agents. Such separation can be
distributed logically across the team (e.g. agents on the left
attack prey on the left). Additionally, while the policies may
be heterogeneous, they likely should overlap by a significant
amount (e.g. all predators know how to turn to face prey).

The aim is to establish in both domains that the contin-
uum of heterogeneity is indeed being exploited.

4.4 Scaling
Adding agents to a team that was trained at a different

size is challenging because the new agents must be assigned
policies automatically. Yet such a capability could benefit
real-world multiagent applications such as the room-clearing
task; the ability to immediately integrate these new agents
could be critical. The interpolated scaling (Figure 3) made
possible by the heterogeneous substrate is a unique capabil-
ity of HyperNEAT that addresses this problem.

To test this capability, the best CPPN of each generation
of training is tested on several different team sizes without
further learning. While the methodology for scaling is the
same, the details of adding new agents to each domain varies
slightly. In the predator-prey domain the teams are tested
on sizes 7, 9, 25, 100, and 1, 000, which are chosen to test the
teams’ abilities to scale on many levels. However, the room
in the room-clearing domain is too small to accommodate

scaling to very large team sizes. Thus these teams are tested
on all odd-numbered team sizes from 9 to 23. The scaled
teams are tested on the same tasks as the original teams,
isolating the effects of scaling.

4.5 Experimental Parameters
Because HyperNEAT differs from original NEAT only in

its set of activation functions, it uses the same parame-
ters [29]. Both experiments were run with a modified version
of the public domain SharpNEAT package [16]. The size of
each population was 150 with 20% elitism. Sexual offspring
(50%) did not undergo mutation. Asexual offspring (50%)
had 0.96 probability of link weight mutation, 0.03 chance
of link addition, and 0.01 chance of node addition. The
available CPPN activation functions were sigmoid, Gaus-
sian, absolute value, and sine, all with equal probability of
being added to the CPPN. Parameter settings are based on
standard SharpNEAT defaults and prior reported settings
for NEAT [29,31]. They were found to be robust to moder-
ate variation through preliminary experimentation.

5. RESULTS
Figure 5 shows the training performance over generations

of the teams in both domains averaged over 20 runs in each
configuration of predator-prey (60 total) and 20 runs of room
clearing. In both cases, heterogeneous teams find signifi-
cantly more efficient policies and do so more quickly than
the homogeneous teams (p < 0.001 in both domains), con-
firming the utility of a team-wide policy geometry. In fact,
the homogeneous teams rarely solve the task at all in the
predator-prey domain. Thus the heterogeneity of policies
discovered by HyperNEAT is helpful in both domains.

5.1 Scaling Performance
Multiagent HyperNEAT encodes a team as a pattern of

policies distributed across the geometry of the team rather
than as a group of individual agents. Thus each CPPN can
encode the policies of any number of agents, allowing the
team size to change without further training. To confirm
this capability the teams in both domains were scaled to
include more agents without any additional learning. The
policies of new agents in heterogeneous configurations are
determined by inserting new networks into the substrate as
in Figure 3. The main question is whether performance can
be maintained (and even improved) after scaling. Figure 6
shows the scaling performance of the the teams in the two
domains. For the predator-prey domain, scaling results are
shown as speed (defined as the time taken to capture all
prey, where a full 2,000 time steps per formation is given
if the team is unable to capture all of them) at which the
task was completed for the new team sizes (lower is bet-
ter). In the room-clearing domain, results are measured as
room coverage over the last 15 seconds (higher is better).
The data was collected by testing every generation cham-
pion from each of the 20 runs on all scaling sizes. The team
that scores the highest in the most new scenarios is chosen
to represent each run. The scores of these best scalers from
each of the 20 runs are then averaged. This method of test-
ing follows from Gruau et al. [17] and is designed to compare
the best overall teams that each method can create.

Note that in general as team size increases, performance
should improve because either there are more predators avail-
able against the same number of prey or there are more
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Figure 5: Training Performance. (a) For the predator-
prey domain the training performance (defined as the aver-
age time remaining after catching all the prey) of the team
is averaged over the three formation shapes and over twenty
runs on each shape. (b) In the room-clearing domain perfor-
mance (defined as sum of the number of grid squares covered
by the team during the evaluation period) is averaged over
twenty runs. In both cases the heterogeneous teams learned
the best solutions and learned most quickly.

agents to cover the same size room. However, such improve-
ment is not guaranteed because the agents cannot sense each
other so it is possible for new agents to unknowingly interfere
or become redundant with the previously existing agents.
Thus the question is whether coordination is maintained so
that performance improves as more agents are added.

The main result is that multiagent HyperNEAT makes it
possible for heterogeneous teams to increase in size without
additional learning (Figure 6). Scaling performance gener-
ally mirrors training performance in the sense that the het-
erogeneous teams significantly outperform (p < 0.001) the
homogeneous teams in both domains. Interestingly, while
homogeneous teams also benefit from more agents in the
predator-prey task, their performance begins to decline as
more agents are added in room clearing.

In both domains the difference between both teams is
quantitative and qualitative; the heterogeneous teams typ-
ically employ complex and scalable strategies while the ho-
mogeneous teams apply unsophisticated approaches. For
example, in the predator-prey domain one strategy used
by the heterogeneous teams is corralling, wherein several
predators encircle the prey and push them inward. In con-
trast, homogeneous teams typically just chase prey in cir-
cles until they encounter another predator. Similarly, in
the room-clearing domain the heterogeneous agents tend to
split in half and stop moving when they are in advanta-
geous positions, while the homogeneous agents bunch into
groups and then split apart. Such a strategy is problematic
because additional agents cause more collisions, making it
hard to split apart, which explains the declining homoge-
neous performance in room clearing as team size increases.
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Figure 6: Scaling Performance. Scaling performance
(time remaining for predator-prey and grid squares observed
for room clearing) is shown for teams in both domains. It is
determined by averaging the performance of the team from
each run with the best performance on all team sizes over all
twenty runs. Heterogeneous teams significantly outperform
homogeneous teams at scaling in each domain.

Video demonstrations of these behaviors are available at
http://eplex.cs.ucf.edu/mahnaamas2010.html.

Thus the main conclusion is that heterogeneous teams,
which can interpolate new roles through the policy geometry,
scale best (indeed it is significant that heterogeneous teams,
which perform better, can scale at all). This result suggests
that multiagent HyperNEAT is an effective new approach
to training scalable heterogeneous multiagent teams.

6. DISCUSSION
In their recent survey of cooperative multiagent learning,

Panait and Luke [21] cite scalability to be a “major open
topic” in the field. In a first step in this direction, multia-
gent HyperNEAT was able to create teams of heterogeneous
agents that could scale several orders of magnitude in size
without further training. Such a task is prohibitive for tradi-
tional heterogeneous multiagent learning techniques, which
do not encode the team as a pattern, yet multiagent Hyper-
NEAT accomplished it by representing the teams as patterns
rather than as individual agents and exploiting the policy
geometry of the teams.

In this sense, the major contribution of this work is con-
ceptual because it offers a novel perspective on multiagent
learning. Nevertheless, as a practical matter, undoubtedly
there will be interest in applying more traditional techniques
such as CCEAs and MARL to scaling in similar domains.
Yet the lack of a principled approach to interpolating poli-
cies in such methods is a significant obstacle that will make
direct comparison difficult, at least until an alternative such
capability is introduced.

An important difference between the results in predator-
prey and in room clearing is that while the heterogeneous
policies improve on average in both domains with more agents,
the homogeneous policies degrade on average as the team
gets larger in room clearing. The technical reason for this
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disparity is that the collisions in the small room mean that
adding more agents that all do the same thing will eventu-
ally cause a pile-up. However, more generally, it shows that
adding more agents is not always automatically helpful; thus
the ability to intelligently interpolate intermediate policies
along a cooperative spectrum will sometimes be critical to
enabling scaling, highlighting the utility of policy geometry.
Furthermore, even though the homogeneous team does im-
prove with more agents in predator-prey, its performance is
still significantly worse than every heterogeneous team size,
which means that simply improving through scaling is not
enough; the idea is to improve a policy that is already good,
which is possible through heterogeneous policy geometry.

7. CONCLUSION
This paper presented a new, scalable method for training

multiagent teams called multiagent HyperNEAT. By repre-
senting teams as patterns of policies, rather than as several
distinct agents, the teams are able to dynamically change
their size, up to several orders of magnitude, without any
further training. Additionally, this approach to learning is
able to overcome the problem of reinvention faced in tradi-
tional multiagent learning by exploiting team geometry and
the continuum of heterogeneity. These novel capabilities
were demonstrated in both predator-prey and room-clearing
domains. More fundamentally, multiagent HyperNEAT of-
fers a new perspective on multiagent learning that focuses
on how agents on a team relate to one another and how
those relationships can be exploited to foster cooperation
and principled scaling.
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